Additive models in censored regression

نویسندگان

  • Jacobo de Uña-Álvarez
  • Javier Roca-Pardiñas
چکیده

In this paper we consider additive models in censored regression. We propose a randomly weighted version of the backfitting algorithm that allows for the nonparametric estimation of the effects of the covariates on the response. Given the high computational cost involved, binning techniques are used to speed up the computation in the estimation and testing process. Simulation results and the application to real data reveal that the predictor obtained with the additive model performs well, and that it is a convenient alternative to the linear predictor when some nonlinear effects are suspected. 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regression Analysis of Case Ii Interval-censored Failure Time Data with the Additive Hazards Model.

Interval-censored failure time data often arise in clinical trials and medical follow-up studies, and a few methods have been proposed for their regression analysis using various regression models (Finkelstein (1986); Huang (1996); Lin, Oakes, and Ying (1998); Sun (2006)). This paper proposes an estimating equation-based approach for regression analysis of interval-censored failure time data wi...

متن کامل

Global Bahadur representation for nonparametric censored regression quantiles and its applications

This paper is concerned with the nonparametric estimation of regression quantiles where the response variable is randomly censored. Using results on the strong uniform convergence of U-processes, we derive a global Bahadur representation for the weighted local polynomial estimators, which is sufficiently accurate for many further theoretical analyses including inference. We consider two applica...

متن کامل

Path consistent model selection in additive risk model via Lasso.

As a flexible alternative to the Cox model, the additive risk model assumes that the hazard function is the sum of the baseline hazard and a regression function of covariates. For right censored survival data when variable selection is needed along with model estimation, we propose a path consistent model selector using a modified Lasso approach, under the additive risk model assumption. We sho...

متن کامل

Bayesian Nonparametric Modeling in Quantile Regression

We propose Bayesian nonparametric methodology for quantile regression modeling. In particular, we develop Dirichlet process mixture models for the error distribution in an additive quantile regression formulation. The proposed nonparametric prior probability models allow the data to drive the shape of the error density and thus provide more reliable predictive inference than models based on par...

متن کامل

Penalized Estimators in Cox Regression Model

The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regressi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2009